SP2023 Week 06 • 2023-03-02

George

Announcements

- Our scavenger hunt with WiCyS has been moved to April 15!
 - <u>New signup link here: https://forms.gle/GJrSnRzTZxvvLNSz5</u>

- Social next Thursday
 - Take an hour to relax with us!

ctf.sigpwny.com sigpwny{qu4n7um4n14_15_f4k3}

Disclaimer

- I have no idea what I'm talking about!
- Theorists, don't kill me
 - Take ECE 305, ECE 406, PHYS 214, PHYS 398 to learn more
- Quantum computing is very confusing and a relatively new type of challenge in CTF: ask for help!

Quantum Primer

- Qubits
 - Bloch Sphere
- Circuits
 - Other models exist: Quantum Turing Machines, ZX-Calculus
 - algassert.com/quirk
- Hardware
 - Superconducting, Ion-trap
 - Simulators

What Makes Qubits Special

- Superposition
 - Having a certain amount of 0-ness and 1-ness simultaneously
 - This alone can encode arbitrary amounts of information
- Entanglement
 - Make qubits best friends 4 ever
 - Schrödinger's cat
- Interference
 - All sorts of tricks to make the math "work out" to pick out your desired state(s)

Brief Math Interlude

Circuits/gates are just unitary matrices Notation:

- $\left|0
 ight
 angle,\left|1
 ight
 angle$ are classical 0 and 1
- You can "concatenate" (read: tensor product) kets together to form a register like so: $|0\rangle \otimes |1\rangle = |01\rangle$, $|0\rangle^{\otimes n} = |0 \dots 0\rangle$

Don't calculate anything by hand: use numpy!

n

Circuit Diagrams

Quantum Gates

Useful gates:

- Hadamard, R_x, R_y, R₇, SWAP

Controlled gates: if statement's buff cousin

- How you get entanglement!
- You can control any gate

The Quantum Speedup

Fourier Transform

Hazingly fast

Used as a component of many, many quantum algorithms

Search

Given a black box function, find the unique input that produces a given output.

Simulation

Creating new proteins, materials, medicines

Quantum corollary to Moore's Law

 $O(n) \to O(\sqrt{n})$ $O(c^n) \to O(n)$

A New Hope

- Not all problems in NP are in Bounded-error Quantum
 Polynomial complexity class (probably...)
- Elliptic curve cryptography, lattices (CRYSTALS-Kyber)

Caveats

- No-cloning theorem
- No-teleportation theorem
- Ancilla qubits
- Hardware is fickle
 - Largest quantum computer at time of writing is IBM Osprey (433 qubits)
- Qubits decohere quickly, gates are imperfect, and there's noise everywhere what to do?
 - Error correction!

pwntools, But Quantum!

Almost all challenges are either running a quantum circuit locally (OpenQASM) or applying gates to a server

Create circuit \Rightarrow Apply gates \Rightarrow Simulate \Rightarrow Post-processing

pip install qiskit[visualizations]

Example: Entanglement

from qiskit import *

circ = QuantumCircuit(2)
circ.h(0)
circ.cx(0, 1)
circ.measure_all()

DiceCTF 2023: super-qomputer

"Just run the program and it prints the flag: assuming you have a quantum computer available"

Given challenge.7z, which decompresses to challenge.qasm

Intuition: How can this be efficiently simulated?

DiceCTF 2023: super-qomputer

circ = QuantumCircuit.from_qasm_file("challenge.qasm")

sim = Aer.get_backend("aer_stabilizer_simulator")

- res = execute(circ, sim, shots=1).result()
- bin_num = list(res.get_counts(0).keys())[0]

print(int(bin_num[:len(bin_num)//2], 2).to_bytes(41, "big"))

CSAW 22 CTF Qual: quantum-leap

"My friend took the quantum leap and purchased a quantum computer with two qubits. They mentioned using a quantum logic gate to input the flag and they gave me the computers output. I have been stuck and Can NOT figure out the flag."

Output: wxqvn\$Zae\${deyZv\$d"i

Intuition: Something with CNOTs; check the output format

CSAW 22 CTF Qual: quantum-leap

```
output = "wxqvn$Zae${deyZv$d\\\"i"
```

```
wow = ''.join([format(ord(x), '08b') for x in output])
```

```
for i in range(0, len(wow), 2):
```

```
qc, output = XOR(wow[i], wow[i+1])
```

```
tmp += output
```

```
print(binary2string(tmp))
```


Resources

Qiskit Textbook

Xanadu Quantum Codebook (uses PennyLane!)

MITRE Intro to Quantum Software Development

quantumcomputing.stackexchange

Resources (For Nerds)

Quantum Information and Quantum Computation, Michael Nielsen and Isaac Chuang

From Classical to Quantum Shannon Theory, Mark Wilde

arXiv > quant-ph

Next Meetings

2023-03-05 - This Sunday

- Fuzzing with Richard and Juniper
- Learn what fuzzing is and how to use a fuzzer to find vulnerabilities!

2023-03-09 - Next Thursday

- Social!
- Chill with us as spring break nears

sigpwny{qu4n7um4n14_15_f4k3}

